报告人:王嘉威
哈尔滨工业大学电子与信息工程学院副教授
报告题目:基于纳米薄膜自组装的光学微腔的最新进展
时间:2020年12月4号(星期五)上午10:00-11:00
地点:深圳大学沧海校区致腾楼(计算机软件大楼)223会议室
主持人:时玉萌教授
报告人简介:
王嘉威,哈尔滨工业大学电子与信息工程学院副教授。曾于2011年,2016年于中山大学物理学院、香港科技大学电子与计算机工程系取得理学学士、工学博士学位。2016至2020年于德国莱布尼茨固态材料研究所(IFW Dresden)从事博士后研究,2017至2020年兼任德国开姆尼茨工业大学(TU Chemnitz)电子与信息工程系副研究员。主要研究方向包括微纳光子学、硅基光子学在光传感、光操控等方面的应用。曾在Science Advances, Laser & Photonics Reviews, Nano Letters, ACS Photonics等国际知名期刊发表论文29篇,在国际、国内知名会议、论坛做报告20余次。
报告简介:
在过往20年间,具备回音壁模式(Whispering-gallery-mode, WGM)的光学微腔因为它所具备的优异的光学特性(如超高品质因子,较小的模式容量)得到了广泛的科研关注。对于传统的片上集成的WGM微腔,由于依赖自上而下的曝光刻蚀技术,光场常常被限制在一个二维结构的共振面内。而采用“剪纸”和“折纸”技术的纳米薄膜结构使得三维的面外微管谐振腔以及三维结构的光场束缚成为可能。在本次报告中,我将介绍基于纳米薄膜自组装的光学微腔的最新进展。它独特的螺旋形卷曲结构打破了对称性,使得光场内部的手性特征以及外部的定向出射的自由调制成为可能。此外,超薄纳米薄膜为构建新型立体的“光子分子”系统提供了新的思路和途径,三维光场也为光子分子中的耦合强度增加了一个调节自由度。最后,我将介绍纳米薄膜光学腔在表面分子超灵敏探测中的应用,通过解析模式位移与展宽,一些表面分子吸附/脱附的动态过程首次得以被清晰的展现。
Whispering-gallery-mode (WGM) optical microcavities have been continuously attracting research attention due to their key merits of long photon lifetime and small mode volume over the past two decades. For conventional on-chip integrated WGM microcavities, the light field is strongly confined in a 2D plane due to the inherent limitation of top-down fabrication methods. Microtubular microcavities made by patterning and self-assembling pre-strained nanomembranes naturally support 3D WGM resonances. In this talk, I will present the latest progress on both fundamental investigations and practical applications of nanomembrane-based microtubular cavities. The tailored 3D cavity shape and spiral rolling shape with a broken rotational symmetry leads to the free modification of multiple split eigenstates in a 3D space and the deterministic resonant light emission directionalities. In addition, the sub-wavelength-thick cavity wall facilitates constructing novel “photonic molecule” systems with controllable inter-cavity coupling strength and coupling regimes. At last, I will introduce the latest sensing application based on nanomembrane-based optical microcavities. By virtue of the strong evanescent field and the feasibility of integrating with plasmonic nanostructures and graphene monolayer, the tubular microcavities have been proved as ultra-sensitive detectors for in-situ monitoring the dynamics of molecular adsorption/desorption at the tube surface.