报告题目:电解液及电极界面建模
报告人:明军 研究员
单位:中国科学院长春应用化学研究所
报告时间:2020年12月22号(星期二)上午9:30-11:30
报告地点:深圳大学沧海校区致腾楼(计算机软件大楼)223会议室
主持人:时玉萌 教授

报告内容简介:电解液作为锂离子电池的主要组成部分,担当着传输Li+离子的重要角色,其重要性如同人类身体的“血液”。但是,如何认知和解析电解液,以及了解电解液在电极材料表面的界面行为,是目前锂离子电池领域内的研究难点。基于此,报告人拟通过:i)提出重新认识固体电解质界面模(solid electrolyte interphases, SEI)的作用;ii)提出重新认识电解液添加剂的作用;iii)以及提出基于Li+溶剂化结构构筑分子界面模型以解释、预测电极稳定性的三项研究,首次提出金属离子溶剂化结构及溶剂化结构简式对研究电解液配位化学以及理解电极稳定性的重要性。同时,报告人还将对如何设计电解液、如何了解电解液分解过程以及判断电解液稳定性等细节做出自己的见解及分析。
报告人简介:明军,研究员,博士生导师。2012年获得中国科学院长春应用化学研究所博士学位,2012-2017年分别在韩国汉阳大学Yang-Kook Sun、日本东京大学Atsuo Yamada、沙特阿卜杜拉国王科技大学Lain-Jong Li、Husam N. Alshareef等世界知名课题组开展博士后研究工作。2017年12月入职中国科学院长春应用化学研究所。研究课题主要包括金属(离子)(锂、钠、钾)电池材料及电解液关键问题及技术等。研究内容立足于基础,以解决企业界在电池材料制备、电解液配方以及电池设计等方面的难题为目标,服务于电池产品的实际应用。首次提出Li+溶剂化结构对电极稳定性的重要影响,重新认识电解液添加剂作用,以及预测电极稳定性的界面模型。近5年在ACS Energy Lett.、Adv. Energy Mater.、ACS Nano、Adv. Funct. Mater.、Nano Lett.、Mater. Sci. Eng.: R: Rep.等国际知名期刊发表与金属(离子)电池研究相关学术论文100余篇,其中,第一作者及通讯作者论文60余篇,H-index 32。目前,申请美国发明专利4项,中国发明专利1项。国内外指导硕博士20余名。2017-2020年主持研究所、国重室、国防军工及企业科研项目6项。与美国、德国、瑞士、韩国、日本、沙特、意大利等国家的电池知名课题组建有良好的合作关系。
近五年代表作:
1. Q. Li, et. al, J. Ming*, Unrevealing New Role of Ethylene Carbonate Solvation Shell in Rechargeable Metal Ion Batteries, ACS Energy Letters, 2020, nz-2020-021402.R1, Accepted.
2. L. Zhou, et.al, J. Ming,* Electrolyte-mediated Stabilization of High Capacity Micro-sized Antimony Anodes for Potassium Ion Batteries, Advanced Materials, 2020, adma.202005993R1. Accepted.
3. J. Zhang, et. al, J. Ming*, Model-based Design of Stable Electrolytes in Potassium Ion Batteries, ACS Energy Letters, 2020, 5, 3124-3131.
4. J. Zhang, et. al, J. Ming,* Model-based Design of Graphite Compatible Electrolyte in Potassium Ion Batteries, ACS Energy Letters, 2020, 5, 2651-2661.
5. G. Liu, et. al, J. Ming*, Additives Engineered Non-flammable Electrolyte for Safer Potassium Ion Battery, Advanced Functional Materials, 2020, 2001934.
6. L. Zhou, et. al, J. Ming,* Electrolyte Engineering Enables High Stability and Capacity Alloying Anodes for Sodium and Potassium Ion Batteries, ACS Energy Letters, 2020, 5, 766-776.
7. Y. Wu, et. al, J. Ming,* An Empirical Model for High-Energy Battery Design beyond 300 Wh/kg, ACS Energy Letters, 2020, 5, 807-816.
8. H. Xue, et. al, J. Ming,* Unraveling Metal Oxide Role for Exfoliating Graphite: New Strategy to Construct High-Performance Graphene-modified SiOx-based Anode for Lithium-ion Batteries, Advanced Functional Materials, 2020, 2001934.
9. L. Zhou, et. al, J. Ming,* Engineering Sodium-Ion Solvation Structure to Stabilize Sodium Anode: Universal Strategy for Fast-charging and Safer Sodium-ion Batteries, Nano Letters, 2020, 20, 3247-3254.
10. L. Zhou, et. al, J. Ming,* Understanding Ostwald Ripening and Surface Charging Effects in Solvothermally-Prepared Metal Oxide-Carbon Anodes for High-Performance Rechargeable Batteries, Advanced Energy Materials, 2019, 1902194.
11. Y. Wu, et. al, J. Ming,* An Exploration of New Energy Storage System: High Energy Density, High Safety and Fast Charging Lithium-Ion Battery, Advanced Functional Materials, 2019, 29, 1805978.
12. J. Ming, et. al, Molecular-Scale Interfacial Model for Predicting Electrode Performance in Rechargeable Batteries, ACS Energy Letters, 2019, 4, 1584-1593.
13. J. Ming, et.al, New Insight on the Role of Electrolyte Additives in Rechargeable Lithium-Ion Batteries, ACS Energy Letters, 2019, 4, 2613-2622.
14. Y. Wu, et. al, J. Ming,* New Organic Complex for Lithium Layered Oxide Modification: Ultra-thin Coating, High-Voltage and Safety Performances, ACS Energy Letters 2019, 4, 656-665.
15. J. Ming, et. al, Zinc Ion Batteries: Progress, Challenges and Perspectives, Materials Science and Engineering: R: Reports, 2019, 135, 58-84.
16. W. Wahyudi, et. al, J. Ming,* Phase Inversion Strategy to Flexible Freestanding Electrode: Critical Coupling of Binders and Electrolytes for High Performance Li-S Battery, Advanced Functional Materials, 2018, 28 (34), 1802244.
17. W. Wang, et. al, J. Ming,* Recognizing the Mechanism of Sulfurized Polyacrylonitrile Cathode Material for Li-S Battery and beyond in Al-S battery, ACS Energy Letters, 2018, 3, 2899-2907.
18. J. Ming, et. al, New Insights on Graphite Anode Stability in Rechargeable Batteries: Li Ion Coordination Structures Prevail over Solid Electrolyte Interphases, ACS Energy Letters, 2018, 3, 335.
19. M. Li, et. al, J. Ming,* L. J. Li,* Metal-Organic Framework-Based Separators for Enhancing Li-S Battery Stability: Mechanism of Mitigating Polysulfide Diffusion, ACS Energy Letters, 2017, 2, 2362.
20. J. Ming,* et. al, Multilayer Approach for Advanced Hybrid Lithium Battery, ACS Nano, 2016, 10, 6037.
21. J. Ming,* et. al, Redox Species-Based Electrolytes for Advanced Rechargeable Lithium-Ion Battery, ACS Energy Letters, 2016, 1, 529.